三轴运动控制器软件开发之通信协议 V2.0

版本: V2.0,日期: 2020-8-15 作者: 桂林珩源科技有限公司 (Mr.Lee)

- 一、 通信协议规约: MODBUS-RTU, 主要应用标准 MODBUS-RTU 里面的部分通信规则, 具体举例如下:(主要实现 03、06、10、05 四种功能码)。
 - (1) 用 03 功能码 读取寄存器中的数据内容。寄存器地址: 0x0000 和 0x0001 ;对应市场上标准 PLC 的地址为 40001H、 40002H。

设备号/站号	功能码	从站数据起始地址	读寄存器个数	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节, 高位在前)	(2 个字节, 低位在前)
01	03	00 00	00 02	C4 OB

回应信息格式: 回字节个数=5+2*N; N 为读的寄存器个数

	1 W=10.5 Hz (1 1 1 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
设备号/站号	功能码	数据字节个数	回数据内容(高位在前)	CRC 校验	
(1 个字节)	(1 个字节)	(1 个字节)	40001 地址的数据 40002 地址的数据		
01	03	04	00h B4h 00h 08h	ВВН ДЗН	

(2) 写单个保持寄存器 06 功能码

设备号/站号	功能码	从站数据地址	数据内容	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节)	(2 个字节)
01	06	00 01	00 04	D9 C9

回信息格式: 和发送的数据一样。回字节个数=8个

(3) 写多个寄存器 10 功能码

(比如:设定运行距离的值为 200,对应十六进制 0x00c8。)

寄存器地址为: 0x0009 和 0x000a,

设备号/站号	功能码	从站数据起始地址	寄存器个数	数据字节个数	数据内容	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节)	(1 个字节)	数据 1 数据 2,,,,,	(2 个字节)
01	10	00 09	00 02	04	00 C8 00 00	B2 3B

回应信息格式:回字节个数=8个

设备号/站号	功能码	从站数据起始地址	寄存器个数	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节)	(2 个字节)
01	10	00 09	00 02	91 CA

注意:读/写一个32位的参数(即占2个寄存器)时,低16位在前,高16位在后。

(4) 写单个线圈 05 功能码 (比如:控制电机单次运行的命令)

请求数据域中的常量说明请求的 ON/OFF 状态。十六进制值 FF 00 请求输出为 ON。十六进制值 00 00 请求输出为 OFF。其它所有值均是非法的,并且对输出不起作用。

设备号/站号	功能码	输出线圈地址	输出值	CRC 校验
(1 个字节)	(1 个字节)	(2 个字节, 高位在前)	(2 个字节)	(2 个字节)
01	05	00 07	ff 00	3D FB

回信息格式: 和发送的数据一样。 回字节个数=8 个

二、 寄存器分配及功能介绍

工

程

参

数

)

(1) 保持寄存器(数据寄存器)

说明 1: 数据寄存器地址分配主要包括 2 块内容,其中地址范围 0x0000-0x1FFF 分配给了控制器的一个**工程参数**,上位机软件可以通过此范围的地址,对寄存器进行读和写(设定);另一个地址范围为: 0x2000-0x21FF,分配给了控制器的**基本参数**,通过此范围寄存器地址的读、写操作,可以配置控制器相关的基本参数。用到的数据寄存器为: 0x0000-0x21FF,合计 8704 个寄存器,17408 个数据字节。上、下位机需要开辟 8704 个无符号的 16 位数据缓冲器。

说明 2: (×1000)解释,在数据寄存器表中,很多寄存器备注里面有(×1000),首先表示的是从下位机读取这些寄存器里面的数据到上位机时,这些数据是乘了 1000 的,所以上位机在收到这些数据后,首先是要÷1000,得到的商是取整后显示,还是保留最多三个小数位显示,看具体寄存器表中的说明;然后,对这些标注有(×1000)的数据寄存器进行设定时,将设定的数据先乘以 1000,然后再根据通信规约,变成相应的高低字节进行发送给下位机控制器。例如:从下位机控制器中读取到寄存器 0x2002 和 0x2003 中的 32 位数据,对应为十进制的 2168,实际应该是 2168÷1000,由于对应寄存器表中的说明是可以显示三个小数位,所以显示为 2. 168。

	寄存器编号	定义(对应参数)	读/写
	0x0000	指令集	R/W
	0x0001	命令	(R 代表可以从下位
	0x0002-0x0003	参数1(×1000)	机中读取,W代表可
程	0x0004-0x0005	参数 2(×1000)	以向下位机中写
序	0x006-0x0007	参数 3(×1000)	入。)
编	0x008-0x009	参数 4(×1000)	
辑	0x000A-0x000B	参数 5(×1000)	
(<u> </u>	

•

约 682 行代码地址(程序指令表) 0x000C - 0x1FFF。

详细参考后面工程参数表的说明。

工程参数,每次与下位机交互最多10行,共120个寄存器,

数据量 240 个字节。

实际应用时指令行数不超过500行,每条指令代码占用12个寄存器。

说明:此部分的数据寄存器为控制器的工程指令部分,客户自行编写上位机软件(或编写 PLC),通过总线 232 通信控制时,此部分寄存器可以不用理会。

	0x2000-0x2001 (对应十进制:	(×10 ⁶ , 即	X 脉冲当量显示 R
	8192 和 8193)	1000000),显示时最多	表示每个脉冲对应控
		6 个小数位。	此轴运行的距离。
	0x2002-0x2003 8194	X 轴导程(×1000)	
		显示时最多可以 3 位小	
参		数,同样输入也是可以3	
数		位小数。 电机一圈对应运	
设		行的距离。	
置	0x2004-0x2005 8196	X轴细分数(根据连接的	
(驱动器细分,如 1600,	
基		3200 等待进行配置)	
本	0x2006-0x2007 8198	X 轴行程 (×1000)	
参		显示时最多可以3位小	
数		数,同样输入也是可以3	
)		位小数。 表示此轴电机最	- /m
		大运行的保护距离。	R/W
	0x2008 8200	X 轴回原点方向(存入0	
		或 1) 更改方向,将更改	
-		电机的运行找 0 的方向。	
	0x2009-0x200A 8201	X轴回原点速度	
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
	0.0000 0.0000 0000	位小数。	
	0x200B-0x200C 8203	X 轴原点回退距离	
		(×1000) 显示时最多可以 3 位小	
		数,同样输入也是可以3	
		位小数。表示此轴电机找	
		到机械零点后,回退的距	
		离,然后再次找原点。	
	0x200D-0x200E 8205	(×10 ⁶ , 即	Y 脉冲当量显示 R
		1000000),显示时最多	,
		6 个小数位。	
	0x200F-0x2010 8207	Y 轴导程	
		(×1000)	
	0x2011-0x2012 8209	Y轴细分数	
	0x2013-0x2014 8211	Y 轴行程	R/W
		(×1000)	(参考 X 轴的基本参
	0x2015 8213	Y轴回原点方向(无变	数说明)
		化, 存入0或1)	
	0x2016-0x2017 8214	Y轴回原点速度	
		(×1000)	
	0x2018-0x2019 8216	Y轴原点回退距离	

		(×1000)	
	0x201A-0x201B 8218	(×10 ⁶ , 即	Z 脉冲当量显示 R
		1000000),显示时最多	
		6个小数位。	
	0x201C-0x201D 8220	Z 轴导程	
		(×1000)	
	0x201E-0x201F 8222	Z轴细分数	
	0x2020-0x2021 8224	Z 轴行程	
		(×1000)	
	0x2022 8226	Z 轴回原点方向(无变	
		化, 存入0或1)	
	0x2023-0x2024 8227	Z 轴回原点速度	
		(×1000)	
	0x2025-0x2026 8229	Z轴原点回退距离	R/W
		(×1000)	(参考 X 轴的基本参
	0x2027-0x2051 8231	A 轴(预留)	数说明)
	0x2052-0x2064 8274	B轴(预留)	
	0x2065-0x2164	预留	
	共 255 个寄存器		
	0x2165-0x2166 8549	X 系统加速度	
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
		位小数。	
		全局参数,基本调试界面	
		和工程运行找零时都是这	
		个加速度值。	
	0x2167-0x2168 8551	Y系统加速度	
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
		位小数。	
		设定范围一般为:对应速	
		度的 1/4 至 4 倍。	
	0x2169-0x216A 8553	Z 系统加速度	
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
		位小数。	
	0x216B-0x216C 8555	系统预留	
	0x216D-0x216E 8557	系统预留	
手	0x216F-0x2170 8559	X 轴位置	R

-4-		()/1000)	
动		(X1000)	
操		显示时最多可以3位小	
作		数。有可能为负数。所以	
		读取上来的是 32 位有符	
		号数。	
	0x2171-0x2172 8561	Y轴位置	R
		(×1000)	
		显示时最多可以3位小	
		数。有可能为负数。	
	0x2173-0x2174 8563	Z 轴位置	R
		(×1000)	
		显示时最多可以 3 位小	
		数。 有可能为负数 。	
	0x2175-0x2176 8565	A 轴位置(预留)	R
	0x2177-0x2178 8567	B 轴位置(预留)	R
	0x2179-0x217A 8569	手动速度	R/W
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
		位小数。	
	0x217B-0x217C 8571	步进距离	R/W
		(×1000)	
		显示时最多可以3位小	
		数,同样输入也是可以3	
		位小数。	
	0x217D 8573	上电是否自动运行状态	R/W
			注意: 若为写功能,
			1表示下位机上电自
			动运行工程指令,0
			表示下位机上电不自
			动运行工程指令。
	0x217E 8574	X 轴运动状态	R
		111 = 7,7,7,0	│ │ 备注: 0 表示电机在
			停止状态,1表示电
			机在运行状态
	0x217F 8575	Y 轴运动状态	R
		~ jar-77 ///-	备注: 0 表示电机在
			停止状态,1表示电
			机在运行状态
	0x2180 8576	Z 轴运动状态	R
	0.2100 0010	7 和公约(小)	
			停止状态,1表示电
			机在运行状态
	0x2181 8577	A 轴运动状态(<mark>预留</mark>)	71.11.1211 17.23 R
	03710 0377	7. 相色别小心(灰田)	1/

	0x2182	8578	B 轴运动状态(<mark>预留</mark>)	R
	0x2183	8579	IN1 状态	R
				备注: 0表示输入无
				效状态,1表示输入
				有效状态
	0x2184	8580	IN2 状态	R
				备注: 0表示输入无
				效状态,1表示输入
输				有效状态
入	0x2185	8581	IN3 状态	R
输				备注: 0表示输入无
出				效状态,1表示输入
状	0.0100	0500	7374 JD-44	有效状态
态	0x2186	8582	IN4 状态	R R R R R R R R R R R R R R R R R R R
				备注: 0表示输入无
				效状态,1表示输入 有效状态
_	0x2187	8583	IN5 状态(预留)	R R
	0x2188	8584	IN6 状态(预留)	R
_	0x2189	8585	IN7 状态(预留)	R
	0x218A	8586	IN8 状态(预留)	R
	0x218B	8587	ORG1 状态	R
				备注: 0表示输入无
				效状态,1表示输入
				有效状态
	0x218C	8588	ORG2 状态	R
				备注: 0表示输入无
				效状态,1表示输入
				有效状态
	0x218D	8589	ORG3 状态	R
				备注: 0表示输入无
				效状态,1表示输入
_	0.0107	0500	op (4.41) - (77.57.)	有效状态
_	0x218E	8590	ORG4 状态(预留)	R
_	0x218F	8591	ORG5 状态(预留)	R
	0x2190	8592	OUT1 状态	R タオーのま二於山工
				备注: 0 表示输出无 效状态, 1 表示输出
				有效状态(输出
				有效状态(制出 OV)
	0x2191	8593	0UT2 状态	R
	ONDIVI	- 300	0012 000	备注: 0表示输出无
				效状态,1表示输出
				有效状态
<u> </u>			ı	I

	0.0100	0504	ovimo dib-t-	D.
	0x2192	8594	OUT3 状态	R
				备注: 0表示输出无
				效状态,1表示输出
			over the Le	有效状态
	0x2193	8595	OUT4 状态	R
				备注: 0表示输出无
				效状态,1表示输出
			over ID I. (TEN)	有效状态
	0x2194	8596	0UT5 状态 (预留)	R
	0x2195	8597	0UT6 状态 (预留)	R
	0x2196	8598	OUT7 状态(预留)	R
	0x2197	8599	OUT8 状态 (预留)	R
	0x2198	8600	OUT9 状态(预留)	R
	0x2199	8601	OUT10 状态 (预留)	R
	0x219A	8602	OUT11 状态 (预留)	R
	0x219B	8603	OUT12 状态 (预留)	R
	0x219C	8604	工程参数的指令行数	R/W
	0x219D-0x21FF	86058703	下面新增:	
			2020-6-17	
	0x21a1	8609	步进电机动作选择	R
手			0 表示步进关:对应动作	
动			如 X-,就一直反向;	
操			1 表示步进开,对应动作	
作			如 X-,就运行设定的距离	
			(基本参数配置的距离)	
	0x21a2-0x21a3	8610-8611	X 运行的终点坐标设定,	R/W
			2个地址,	
			(X1000)	
			显示时三个小数点,用于	
			直线和圆弧插补	
直	0x21a4-0x21a5	8612-8613	Y 运行的终点坐标设定,	R/W
线			2个地址,	
圆			(X1000)	
弧			显示时三个小数点,用于	
插			直线和圆弧插补	,
补	0x21a6-0x21a7	8614-8615	Z 运行的终点坐标设定,	R/W
调			2 个地址, (X1000)	
试			显示时三个小数点,用于	
			直线和圆弧插补	
	0x21a8-0x21a9	8616-8617	XY 或 XZ 圆弧插补时圆弧	R/W
			上的对应的任意一点 X 坐	(三点确定一段圆弧
			标;2个地址,	的原理)
			(X1000)	
			显示时三个小数点.	

0x21aa-0x21ab 8618-8619	XY 或 YZ 圆弧插补时圆弧	R/W
	上的对应的任意一点Y坐	
	标;2个地址,	
	(X1000)	
	显示时三个小数点.	
0x21ac-0x21ad 8620-8621	XZ 或 YZ 圆弧插补时圆弧	R/W
	上的对应的任意一点 Z 坐	
	标;2个地址,	
	(X1000)	
	显示时三个小数点.	
0x21ae 8622	圆弧设定,	R/W
	0表示顺圆弧,1表示逆	
	圆弧.	
0x2065-0x2164	工业触摸屏使用,PC与	R
共 255 个寄存器	APP 软件开发与此无关	(此部分,针对自行
说明: 0x2065\0x2066\0x2067 对应 8293-8295 分配给第一行显		开发上位机软件的客
示指令含义;依次类推,可以84行。	户,不需要了解)	
84 行代码。用了 85		
用到寄存器地址:		
	0x21ac-0x21ad 8620-8621 0x21ae 8622 0x2065-0x2164 共 255 个寄存器 说明: 0x2065\0x2066\0x2067 对应 8 示指令含义; 依次类推, 可以 84 行。 84 行代码。用了 85	上的对应的任意一点 Y 坐标; 2 个地址, (X1000) 显示时三个小数点. 0x21ac-0x21ad 8620-8621

(2) 线圈输出寄存器(一般用来完成控制、动作等操作功能)

说明1: 线圈输出值表示请求的 ON/OFF 状态。主要要来告诉下位机操作,对应发送数据 OXFF00,表示对应输出 ON, 对应 OXOOO0,表示对应输出寄存器 OFF,参考上面具体协议。 说明 2: (下位机开发人员注意)点击回零命令,首先以基本参数里面的手动速度按回零方向找机械零点,找到机械零点以后,然后以二次回零速度反向运行设定的回退距离,运行完这个距离后再以二次回零速度再次找机械零点。(一般二次回零的速度,设定比较小,回退距离一般也比较小)。

	线圈寄存器编号	定义(对应参数)	说明
手动操作	0x0000	系统启动	工程指令从第一行开始运行。说明:点这个按键,发一次 ON下去,一定是松开后,再点才会发第二次 ON 命令下去。只发 ON,不发 OF 命令。此命令与数据寄存器的"自动运行"模式不
	0x0001	Х—	能同时使用 下位机开发人员注
	0x0001	X+	意:每个按键的具体
	0x0003	X回零	功能,根据上面数据
	0x0004	У—	寄存器表中的步进电
	0x0005	Υ+	机功能选择寄存器
	0x0006	Y回零	0x21a1 的值不同,

0x0007	Z—	而下位机的实现的工
0x0008	Z+	- 作功能不同。上位机
0x0009	Z回零	
0x000A	A— (预留)	
0x000B	A+ (预留)	_
0x000C	A 回零(预留)	_
0x000D	B一 (预留)	
0x000E	B+ (预留)	
0x000F	B 回零 (预留)	
0x0010	停止	全面停止系统工作
	14	只发出 ON 的功能。
0x0011	OUT1	, , , , , , , , , , , , , , , , ,
0x0012	OUT2	 输出口动作。
0x0013	OUT3	可以发出 ON/OFF 两
0x0014	OUT4	种功能。
0x0015	OUT5 (预留)	- 下位机人员注意: ON
0x0016	OUT6 (预留)	对应输出口输出
0x0017	OUT7 (预留)	OV, OF 对应输出口
0x0018	OUT8 (预留)	悬空。
0x0019	OUT9 (预留)	
0x001A	OUT10 (预留)	
0x001B	OUT11 (预留)	
0x001C	OUT12 (预留)	
0x001D 29	预 留	
0x001E 30	XY 直线插补命令	只发出 ON 的功能。
		对应下位机完成 XY
		直线插补。
0x001F 31	XZ 直线插补命令	只发出 ON 的功能。
		对应下位机完成 XZ
		直线插补。
0x0020 32	发现寄存器问题	不用
0x0021 33	参数读取	只发出 ON 的功能。
		对应下位机完成从
		FLASH 存储器读数据
		的功能。
0x0022 34	参数保存	只发出 ON 的功能。
		对应下位机完成从将
		基本参数与工程参数
		保存到内部 FLASH 的
		功能。
0x0023 35	发现寄存器问题	不用
0x0024 36	XY 圆弧插补命令	只发出 ON 的功能。
		对应下位机完成 XY

			圆弧插补。
	0x0025 37	XZ 圆弧插补命令	只发出 ON 的功能。
			对应下位机完成 XZ
			圆弧插补。
	0x0026 38	YZ 圆弧插补命令	只发出 ON 的功能。
			对应下位机完成 YZ
			圆弧插补。
	0x0027 39	YZ 直线插补命令	只发出 ON 的功能。
			对应下位机完成 YZ
			直线插补。
	0x0028 40	基本参数清零	需要密码保护
			只发出 ON.
	0x0029 41	工程参数清零	需要密码保护
			只发出 ON
	0x002a 42	基本参数初始化	需要密码保护
			只发出 ON
	0x002b 43	工程运行暂停	运行完成当前指令
			行,才进入暂停,只
			有对应启动键按下才
			继续工作,或者按系
			统停止键停止系统工
			作。
工程	0x0032 50 开始分配 168 个线圈寄存器。		工业触摸屏用到的线
里面	截至地址: 0x00d9 217.		圈指令。PC 软件和
的删	其中: 0x0032 为删除第一行; 0x0033 为在第一行后面增加一		APP 无关。
除、	行指令; 依次类推。		
增加			
按钮	最多可以 84 行指令。		

三、 应用举例

对于想通过本控制器的串口(RS232)与客户自行开发的上位机软件或自行开发的 PLC 软件进行通信时,请注意按如下的步骤编写。

第一个大步骤:

- 1、先将控制器的运行模式设定为: 上电不自动运行。(**数据寄存器: 0x217D, 设定为 0**) 按通信协议控制器回命令。
- 2、停止控制器工作: (**线圈寄存器: 0x0010, 设定为 0xff00**); 按通信协议控制器回命令。
- 3、设定各轴的基本参数:细分、导程、行程、原点方向(可以默认)、二次回零速度、原点回退距离(全部为数据寄存器,参考数据寄存器表); 按通信协议控制器回各条命令。
- 4、设定各轴加速度(如 **X 轴加速度数据寄存器:** 0x2165-0x2166) 按通信协议控制器回命令。
- 5、发送数据保存命令(**线圈寄存器:** 0x0022, **设定为** 0xff00)。 按通信协议控制器回命令。

第二大步骤: (常用的运行动作)

例子 1: 完成 X 轴找机械原点功能 (对应控制器的 ORG1 要外接 X 轴的原点接近开关、 光电开关或机械开关, 24V- 有效)

- 1、设定运行速度 (**数据寄存器:** 0x2179−0x217A) 按通信协议控制器回命令。
- 2、发送 X 轴回零命令(**线圈寄存器:** 0x0003, 设定为 0xff00) 按通信协议控制器回命令。

解释:控制器收到回零命令后,以设定的运行速度、加速度、回零方向参数第一次去找机械零点;找到机械零点后,反向运行回退的距离,再以二次回零速度和设定的加速度再次找零点。

例子 2: X 正向速度 1 运行设定的距离 1, Y 正向速度 2 运行设定的距离 2.

- 1、设定电机步进模式 (**数据寄存器: 0x21a1, 设定为 1**); 按通信协议控制器回命令。
- 2、设定运行速度 1 (**数据寄存器: 0x2179-0x217A**); 按通信协议控制器回命令
- 3、设定运行距离 1 (**数据寄存器: 0x217B-0x217C**) 按通信协议控制器回命令
- 4、发送 X+电机运行命令(**线圈寄存器:** 0x0002, 设定为 0xff00) 按通信协议控制器回命令
- 5、设定运行速度 2 (**数据寄存器: 0x2179-0x217A**); 按通信协议控制器回命令
- 6、设定运行距离 2(**数据寄存器: 0x217B-0x217C**) 按通信协议控制器回命令
- 7、发送 Y+电机运行命令(**线圈寄存器: 0x0005, 设定为 0xff00**) 按通信协议控制器回命令

例子 3: OUT1 输出 0v, 延时 N 秒后, 关掉输出

- 1、发送输出1有效命令(**线圈寄存器:** 0x0011, 设定为 0xff00) 按通信协议控制器回命令
- 2、上位机自行延时 N 秒;
- 3、发送输出 1 无效命令(**线圈寄存器:** 0x0011**, 设定为** 0x0000) 按通信协议控制器回命令

例子 4: XY 直线插补运行,以当前坐标开始,运行到终点坐标位置

- 1、设定运行速度 (**数据寄存器: 0x2179-0x217A**); 按通信协议控制器回命令
- 2、设定 X 终点坐标 (**数据寄存器:** 0x21a2-0x21a3) 按通信协议控制器回命令
- 3、设定 Y 终点坐标 (**数据寄存器:** 0x21a4-0x21a5) 按通信协议控制器回命令
- 4、发送 XY 直线插补命令 (**线圈寄存器: 0**x001E**, 设定 0**xff00) 按通信协议控制器回命令

例子 5: XY 圆弧插补运行,以当前坐标开始,运行到终点坐标位置,顺圆弧

- 1、设定运行速度 (**数据寄存器: 0x2179−0x217A**); 按通信协议控制器回命令
- 2、设定 X 终点坐标 (**数据寄存器: 0x21a2-0x21a3**) 按通信协议控制器回命令
- 3、设定 Y 终点坐标(**数据寄存器:** 0x21a4-0x21a5) 按通信协议控制器回命令
- 4、设定圆弧上任意一点的 X 坐标 (起始和终点位置除外, **数据寄存器:** 0x21a8-0x21a9) 按通信协议控制器回命令
- 5、设定圆弧上任意一点的 Y 坐标 (起始和终点位置除外, **数据寄存器: 0**x21aa-0x21ab) 按通信协议控制器回命令
- 5、设定圆弧方式 (**数据寄存器: 0x21ae**) 按通信协议控制器回命令
- 6、发送 XY 圆弧插补命令 (**线圈寄存器: 0x0024, 设定 0xff00**) 按通信协议控制器回命令